

KC1150- KC1275S (60 Hz)

Ratings @ 0.8 PF		Prime Rating	Stand by Rating
Voltage*1	Frequency*2	KC1150*3	KC1275S*4
220/380 V	60 Hz	1150 kVA	1275 kVA
127/220 V	60 Hz	1141 kVA	1260 kVA
277/480 V	60 Hz	1141 kVA	1263 kVA

4500 mm
2050 mm
2400 mm
6100 Kg

The above ratings represent the generating set capability guaranteed within $\pm 3\%$ at the reference conditions equivalent to those specified in ISO 8528/1 standard.

Notes

- 1. The applicable voltage range is 220V, 380V to 480V for 60Hz applications. For other voltages, please consult factory.
- 2. This generating set is of fixed speed of 1800 rpm.
- 3.KC1150 is the prime power rating of the generating set is wher e a variable load and unlimited hour usage ar e applied with an average load factor of 80% of the prime rating over each 24-hour period. Noting that a 10% overload is permitted for 1 hour in every 12-hour operation.
- 4.KC1275S is the standby power rating of the generating set is wher e a variable load limited to an annual usage up to 500 hours is applied, with 300 hours of which may be continuous running. Noting that no overload is permitted.
- 5.This rating level at voltage 220/380 is achieved when upsizing alter nator to LSA50.2M6

Engine Technical Data				
Make & Model	CUMMINS QST30-G4			
Cylinders & Arrangement	12; 50° Vee			
Bore & Stroke (mm)	140 x 165			
Induction system	Turbo Charged & Aftercooled			
Combustion	Direct injection			
Cycle	4 stroke			
Compression ratio	14.0:1			
Cooling System	Water cooled			
Displacement	30.5 liters			
Lube oil capacity	154 liters Max			
Coolant capacity	79 liters			
Standard governor (Optional)	Electronic			
Engine Speed	1800 rpm			
Fuel Consumption (L/H) @ 100% Load	240 @ 50% Load 119			
Fuel Consumption (L/H) @ 75% Load	177 @ 25% Load 66			
Radiator Cooling Air Flow (m ³ /s)	17.07			
Emissions regulations	For non-regulated territories			
Exhaust temperature °C (max)	495			
Max exhaust gas flow (m³/min)	197.1			
Max. allowed back pressure (kPa)	7.0			

The above performance data are valid as per the following specs:

- Diesel Fuel is accorg to BS2869 Class A2 or equivalent.
- Lubricating oil is according to Grade SAE 15W-40 API CI4.
- The coolant should be 50% antifreeze and 50% fresh water.

Alternator Technical Data Leroy Somer TAL049E / Leroy Somer LSA50.2M6 OR Stanford Make & Model Frequency / No. of poles 60Hz / 4P 60Hz / 4P Winding pitch 2/3 2/3 Ingress protection IP23 IP23 AVR model R150 R450 **Insulation class** Н **Overspeed** 2250 R.P.M. 2250 R.P.M. Н Terminals (Optional) 6 (12) 6(12)Voltage regulation $\pm 1\%$ $\pm 1\%$ Coolant air flow $1.2 \, \text{m}^3/\text{s}$ **Excitation system** SHUNT **AREP** 2.2 m³/s